3.1.51 \(\int \frac {d+e x^4}{x^4 (a+b x^4+c x^8)} \, dx\) [51]

Optimal. Leaf size=394 \[ -\frac {d}{3 a x^3}+\frac {c^{3/4} \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}} \]

[Out]

-1/3*d/a/x^3+1/4*c^(3/4)*arctan(2^(1/4)*c^(1/4)*x/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(d+(2*a*e-b*d)/(-4*a*c+b^2)^(
1/2))*2^(3/4)/a/(-b-(-4*a*c+b^2)^(1/2))^(3/4)+1/4*c^(3/4)*arctanh(2^(1/4)*c^(1/4)*x/(-b-(-4*a*c+b^2)^(1/2))^(1
/4))*(d+(2*a*e-b*d)/(-4*a*c+b^2)^(1/2))*2^(3/4)/a/(-b-(-4*a*c+b^2)^(1/2))^(3/4)+1/4*c^(3/4)*arctan(2^(1/4)*c^(
1/4)*x/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(d+(-2*a*e+b*d)/(-4*a*c+b^2)^(1/2))*2^(3/4)/a/(-b+(-4*a*c+b^2)^(1/2))^(3
/4)+1/4*c^(3/4)*arctanh(2^(1/4)*c^(1/4)*x/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(d+(-2*a*e+b*d)/(-4*a*c+b^2)^(1/2))*2
^(3/4)/a/(-b+(-4*a*c+b^2)^(1/2))^(3/4)

________________________________________________________________________________________

Rubi [A]
time = 0.40, antiderivative size = 394, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1518, 1436, 218, 214, 211} \begin {gather*} \frac {c^{3/4} \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right ) \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )}{2 \sqrt [4]{2} a \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}+\frac {c^{3/4} \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right ) \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right )}{2 \sqrt [4]{2} a \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}+\frac {c^{3/4} \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} a \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}+\frac {c^{3/4} \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} a \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {d}{3 a x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^4)/(x^4*(a + b*x^4 + c*x^8)),x]

[Out]

-1/3*d/(a*x^3) + (c^(3/4)*(d - (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*
a*c])^(1/4)])/(2*2^(1/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*Ar
cTan[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3
/4)*(d - (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1
/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4
)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 1436

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*
c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^n), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), In
t[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 - 4*a*c] ||  !IGtQ[n/2, 0])

Rule 1518

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :>
 Simp[d*(f*x)^(m + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*f*(m + 1))), x] + Dist[1/(a*f^n*(m + 1)), Int[(f*x)^
(m + n)*(a + b*x^n + c*x^(2*n))^p*Simp[a*e*(m + 1) - b*d*(m + n*(p + 1) + 1) - c*d*(m + 2*n*(p + 1) + 1)*x^n,
x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -
1] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {d+e x^4}{x^4 \left (a+b x^4+c x^8\right )} \, dx &=-\frac {d}{3 a x^3}-\frac {\int \frac {3 (b d-a e)+3 c d x^4}{a+b x^4+c x^8} \, dx}{3 a}\\ &=-\frac {d}{3 a x^3}-\frac {\left (c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx}{2 a}-\frac {\left (c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx}{2 a}\\ &=-\frac {d}{3 a x^3}+\frac {\left (c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx}{2 a \sqrt {-b-\sqrt {b^2-4 a c}}}+\frac {\left (c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx}{2 a \sqrt {-b-\sqrt {b^2-4 a c}}}+\frac {\left (c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx}{2 a \sqrt {-b+\sqrt {b^2-4 a c}}}+\frac {\left (c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right )\right ) \int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx}{2 a \sqrt {-b+\sqrt {b^2-4 a c}}}\\ &=-\frac {d}{3 a x^3}+\frac {c^{3/4} \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} a \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.05, size = 86, normalized size = 0.22 \begin {gather*} -\frac {\frac {4 d}{x^3}+3 \text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {b d \log (x-\text {$\#$1})-a e \log (x-\text {$\#$1})+c d \log (x-\text {$\#$1}) \text {$\#$1}^4}{b \text {$\#$1}^3+2 c \text {$\#$1}^7}\&\right ]}{12 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^4)/(x^4*(a + b*x^4 + c*x^8)),x]

[Out]

-1/12*((4*d)/x^3 + 3*RootSum[a + b*#1^4 + c*#1^8 & , (b*d*Log[x - #1] - a*e*Log[x - #1] + c*d*Log[x - #1]*#1^4
)/(b*#1^3 + 2*c*#1^7) & ])/a

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.07, size = 68, normalized size = 0.17

method result size
default \(\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-c d \,\textit {\_R}^{4}+a e -b d \right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{4 a}-\frac {d}{3 a \,x^{3}}\) \(68\)
risch \(\text {Expression too large to display}\) \(1633\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^4+d)/x^4/(c*x^8+b*x^4+a),x,method=_RETURNVERBOSE)

[Out]

1/4/a*sum((-_R^4*c*d+a*e-b*d)/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))-1/3*d/a/x^3

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/x^4/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

-integrate((c*d*x^4 + b*d - a*e)/(c*x^8 + b*x^4 + a), x)/a - 1/3*d/(a*x^3)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/x^4/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**4+d)/x**4/(c*x**8+b*x**4+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/x^4/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [B]
time = 10.22, size = 2500, normalized size = 6.35 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^4)/(x^4*(a + b*x^4 + c*x^8)),x)

[Out]

atan((((-(b^11*d^4 + a^4*b^7*e^4 + b^6*d^4*(-(4*a*c - b^2)^5)^(1/2) - 112*a^5*b*c^5*d^4 - 11*a^5*b^5*c*e^4 - 4
8*a^7*b*c^3*e^4 - a^5*c*e^4*(-(4*a*c - b^2)^5)^(1/2) - 4*a^3*b^8*d*e^3 + 128*a^6*c^5*d^3*e - 128*a^7*c^4*d*e^3
 + 86*a^2*b^7*c^2*d^4 - 231*a^3*b^5*c^3*d^4 + 280*a^4*b^3*c^4*d^4 - a^3*c^3*d^4*(-(4*a*c - b^2)^5)^(1/2) + a^4
*b^2*e^4*(-(4*a*c - b^2)^5)^(1/2) + 40*a^6*b^3*c^2*e^4 + 6*a^2*b^9*d^2*e^2 - 15*a*b^9*c*d^4 - 4*a*b^10*d^3*e +
 6*a^2*b^2*c^2*d^4*(-(4*a*c - b^2)^5)^(1/2) + 6*a^2*b^4*d^2*e^2*(-(4*a*c - b^2)^5)^(1/2) + 366*a^4*b^5*c^2*d^2
*e^2 - 720*a^5*b^3*c^3*d^2*e^2 + 6*a^4*c^2*d^2*e^2*(-(4*a*c - b^2)^5)^(1/2) - 5*a*b^4*c*d^4*(-(4*a*c - b^2)^5)
^(1/2) - 4*a*b^5*d^3*e*(-(4*a*c - b^2)^5)^(1/2) + 56*a^2*b^8*c*d^3*e + 48*a^4*b^6*c*d*e^3 - 4*a^3*b^3*d*e^3*(-
(4*a*c - b^2)^5)^(1/2) - 292*a^3*b^6*c^2*d^3*e - 78*a^3*b^7*c*d^2*e^2 + 680*a^4*b^4*c^3*d^3*e - 640*a^5*b^2*c^
4*d^3*e - 200*a^5*b^4*c^2*d*e^3 + 480*a^6*b*c^4*d^2*e^2 + 320*a^6*b^2*c^3*d*e^3 + 16*a^2*b^3*c*d^3*e*(-(4*a*c
- b^2)^5)^(1/2) - 12*a^3*b*c^2*d^3*e*(-(4*a*c - b^2)^5)^(1/2) - 18*a^3*b^2*c*d^2*e^2*(-(4*a*c - b^2)^5)^(1/2)
+ 8*a^4*b*c*d*e^3*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^7*b^8 + 256*a^11*c^4 - 16*a^8*b^6*c + 96*a^9*b^4*c^2 - 256
*a^10*b^2*c^3)))^(1/4)*(((-(b^11*d^4 + a^4*b^7*e^4 + b^6*d^4*(-(4*a*c - b^2)^5)^(1/2) - 112*a^5*b*c^5*d^4 - 11
*a^5*b^5*c*e^4 - 48*a^7*b*c^3*e^4 - a^5*c*e^4*(-(4*a*c - b^2)^5)^(1/2) - 4*a^3*b^8*d*e^3 + 128*a^6*c^5*d^3*e -
 128*a^7*c^4*d*e^3 + 86*a^2*b^7*c^2*d^4 - 231*a^3*b^5*c^3*d^4 + 280*a^4*b^3*c^4*d^4 - a^3*c^3*d^4*(-(4*a*c - b
^2)^5)^(1/2) + a^4*b^2*e^4*(-(4*a*c - b^2)^5)^(1/2) + 40*a^6*b^3*c^2*e^4 + 6*a^2*b^9*d^2*e^2 - 15*a*b^9*c*d^4
- 4*a*b^10*d^3*e + 6*a^2*b^2*c^2*d^4*(-(4*a*c - b^2)^5)^(1/2) + 6*a^2*b^4*d^2*e^2*(-(4*a*c - b^2)^5)^(1/2) + 3
66*a^4*b^5*c^2*d^2*e^2 - 720*a^5*b^3*c^3*d^2*e^2 + 6*a^4*c^2*d^2*e^2*(-(4*a*c - b^2)^5)^(1/2) - 5*a*b^4*c*d^4*
(-(4*a*c - b^2)^5)^(1/2) - 4*a*b^5*d^3*e*(-(4*a*c - b^2)^5)^(1/2) + 56*a^2*b^8*c*d^3*e + 48*a^4*b^6*c*d*e^3 -
4*a^3*b^3*d*e^3*(-(4*a*c - b^2)^5)^(1/2) - 292*a^3*b^6*c^2*d^3*e - 78*a^3*b^7*c*d^2*e^2 + 680*a^4*b^4*c^3*d^3*
e - 640*a^5*b^2*c^4*d^3*e - 200*a^5*b^4*c^2*d*e^3 + 480*a^6*b*c^4*d^2*e^2 + 320*a^6*b^2*c^3*d*e^3 + 16*a^2*b^3
*c*d^3*e*(-(4*a*c - b^2)^5)^(1/2) - 12*a^3*b*c^2*d^3*e*(-(4*a*c - b^2)^5)^(1/2) - 18*a^3*b^2*c*d^2*e^2*(-(4*a*
c - b^2)^5)^(1/2) + 8*a^4*b*c*d*e^3*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^7*b^8 + 256*a^11*c^4 - 16*a^8*b^6*c + 96
*a^9*b^4*c^2 - 256*a^10*b^2*c^3)))^(1/4)*(262144*a^17*c^8*d + 4096*a^13*b^8*c^4*d - 53248*a^14*b^6*c^5*d + 245
760*a^15*b^4*c^6*d - 458752*a^16*b^2*c^7*d - 4096*a^14*b^7*c^4*e + 49152*a^15*b^5*c^5*e - 196608*a^16*b^3*c^6*
e + 262144*a^17*b*c^7*e) + x*(81920*a^15*b*c^8*d^2 - 49152*a^16*b*c^7*e^2 + 1024*a^11*b^9*c^4*d^2 - 13312*a^12
*b^7*c^5*d^2 + 62464*a^13*b^5*c^6*d^2 - 122880*a^14*b^3*c^7*d^2 + 1024*a^13*b^7*c^4*e^2 - 11264*a^14*b^5*c^5*e
^2 + 40960*a^15*b^3*c^6*e^2 - 65536*a^16*c^8*d*e - 2048*a^12*b^8*c^4*d*e + 24576*a^13*b^6*c^5*d*e - 102400*a^1
4*b^4*c^6*d*e + 163840*a^15*b^2*c^7*d*e))*(-(b^11*d^4 + a^4*b^7*e^4 + b^6*d^4*(-(4*a*c - b^2)^5)^(1/2) - 112*a
^5*b*c^5*d^4 - 11*a^5*b^5*c*e^4 - 48*a^7*b*c^3*e^4 - a^5*c*e^4*(-(4*a*c - b^2)^5)^(1/2) - 4*a^3*b^8*d*e^3 + 12
8*a^6*c^5*d^3*e - 128*a^7*c^4*d*e^3 + 86*a^2*b^7*c^2*d^4 - 231*a^3*b^5*c^3*d^4 + 280*a^4*b^3*c^4*d^4 - a^3*c^3
*d^4*(-(4*a*c - b^2)^5)^(1/2) + a^4*b^2*e^4*(-(4*a*c - b^2)^5)^(1/2) + 40*a^6*b^3*c^2*e^4 + 6*a^2*b^9*d^2*e^2
- 15*a*b^9*c*d^4 - 4*a*b^10*d^3*e + 6*a^2*b^2*c^2*d^4*(-(4*a*c - b^2)^5)^(1/2) + 6*a^2*b^4*d^2*e^2*(-(4*a*c -
b^2)^5)^(1/2) + 366*a^4*b^5*c^2*d^2*e^2 - 720*a^5*b^3*c^3*d^2*e^2 + 6*a^4*c^2*d^2*e^2*(-(4*a*c - b^2)^5)^(1/2)
 - 5*a*b^4*c*d^4*(-(4*a*c - b^2)^5)^(1/2) - 4*a*b^5*d^3*e*(-(4*a*c - b^2)^5)^(1/2) + 56*a^2*b^8*c*d^3*e + 48*a
^4*b^6*c*d*e^3 - 4*a^3*b^3*d*e^3*(-(4*a*c - b^2)^5)^(1/2) - 292*a^3*b^6*c^2*d^3*e - 78*a^3*b^7*c*d^2*e^2 + 680
*a^4*b^4*c^3*d^3*e - 640*a^5*b^2*c^4*d^3*e - 200*a^5*b^4*c^2*d*e^3 + 480*a^6*b*c^4*d^2*e^2 + 320*a^6*b^2*c^3*d
*e^3 + 16*a^2*b^3*c*d^3*e*(-(4*a*c - b^2)^5)^(1/2) - 12*a^3*b*c^2*d^3*e*(-(4*a*c - b^2)^5)^(1/2) - 18*a^3*b^2*
c*d^2*e^2*(-(4*a*c - b^2)^5)^(1/2) + 8*a^4*b*c*d*e^3*(-(4*a*c - b^2)^5)^(1/2))/(512*(a^7*b^8 + 256*a^11*c^4 -
16*a^8*b^6*c + 96*a^9*b^4*c^2 - 256*a^10*b^2*c^3)))^(3/4) - 64*a^14*c^7*e^5 - 128*a^11*b*c^9*d^5 + 192*a^12*c^
9*d^4*e - 16*a^9*b^5*c^7*d^5 + 96*a^10*b^3*c^8*d^5 + 16*a^13*b^2*c^6*e^5 + 128*a^13*c^8*d^2*e^3 - 64*a^10*b^5*
c^6*d^3*e^2 + 288*a^11*b^3*c^7*d^3*e^2 + 96*a^11*b^4*c^6*d^2*e^3 - 416*a^12*b^2*c^7*d^2*e^3 + 256*a^13*b*c^7*d
*e^4 + 16*a^9*b^6*c^6*d^4*e - 48*a^10*b^4*c^7*d^4*e - 112*a^11*b^2*c^8*d^4*e - 128*a^12*b*c^8*d^3*e^2 - 64*a^1
2*b^3*c^6*d*e^4) + x*(8*a^13*c^7*e^6 - 8*a^10*c^10*d^6 + 4*a^9*b^2*c^9*d^6 - 8*a^11*c^9*d^4*e^2 + 8*a^12*c^8*d
^2*e^4 + 4*a^9*b^4*c^7*d^4*e^2 + 16*a^10*b^2*c^8*d^4*e^2 - 16*a^10*b^3*c^7*d^3*e^3 + 28*a^11*b^2*c^7*d^2*e^4 +
 8*a^10*b*c^9*d^5*e - 24*a^12*b*c^7*d*e^5 - 8*a^9*b^3*c^8*d^5*e - 16*a^11*b*c^8*d^3*e^3))*(-(b^11*d^4 + a^4*b^
7*e^4 + b^6*d^4*(-(4*a*c - b^2)^5)^(1/2) - 112*...

________________________________________________________________________________________